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Evolution of inhomogeneities in the axion field around the QCD 

epoch is studied numencally, including for the first time important non- 

linear effects. It is found that perturbations on scales corresponding to 

causally disconnected regions at T - 1 GeV can lead to very dense axion 

clumps, with present density p,, 2 10-8gcm-3. This is high enough for 

the collisional 2a + 2a process to lead to Bose-Einstein relaxation in the 

gravitationally bound clumps of axions, forming Bose stars. 
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The invisible axion is one of the best motivated candidates for cosmic dark mat- 

ter, despite being subject to strong cosmological and astrophysical constraints on its 

properties (IO” GeV S f. 5 lo’* GeV for the axion decay constant; 10W5 eV 5 m. ~5 

10e3 eV for the axion mass) [l]. As dark matter, avions would play a role in the 

evolution of primordial density fluctuations and formation of large scale structure. In 

addition to its generic properties, axions also have unique features as dark matter. 

For instance, large amplitude density fluctuations produced on scales of the horizon 

at the QCD epoch [2] lead to tiny gravitationally bound “miniclusters” [3]. It was 

found that the density in miniclusters exceeds by ten orders of magnitude the local 

dark matter density in the Solar neighborhood [3]. This might have a number of 

astrophysical consequences, as well as implications for ,laboratory axion searches [4]. 

In previous studies, spatial gradients of the axion field in the equations of motion 

were neglected. This is a reasonable assumption for temperatures below the QCD 

scale where the evolution of coherent axion oscillations can be treated as pressureless, 

cold dust. However, we find that just at the crucial time when the inverse mass of the 

axion is approximately the size of the horizon, gradient terms become important, and 

a full field-theoretical approach is needed. Here we present the results of a numerical 

study of the evolution of the inhomogeneous axion field around the &CD epoch. 

Though we only consider spherically symmetric configurations, the importance of 

the combined effect of the field gradients and the non-liner attractive self interaction 

should also occur if we relax spherical symmetry. The resulting axion clumps are 

much denser than previously thought, reaching the critical conditions for Bose star 

formation [5]. 

The axion field e(z) is created during the Peccei-Quinn symmetry breaking phase 

transition at T N fa, uncorrelated on scales larger than the horizon at this time [6]. 

For T ,$ f., the field becomes smooth on scalesup to the, horizon, H-‘(T), where 
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H is the expansion rate. This continues until 2” = Tr x 1 GeV when the axion mass 

switches on, i.e., when m,(Tr) x 3H(Tl). Coherent axion oscillations then transform 

fluctuations in the initial amplitude into fluctuations in the axion density. 

Since the initial amplitude of coherent axion oscillations on the horizon scale 

H-‘(Tt) is uncorrelated, one expects typical positive density fluctuations on this 

scale will satisfy p. z 2&, where & is mean cosmological density of axions (31. At 

the temperature of equal matter and radiation energy density, T, = 5.5 Q&* eV (71, 

these fluctuations are already non-linear and will separate out as miniclusters with 

Pa x 3(10eV)4 yu lo-l4 g cme3 13). The minicluster mass will be of the order of 

the dark-matter mass within the Hubble length at temperature Tr , M,, = 10mg Ma. 

The radius of the cluster is R,, - lOr%m, and the gravitational binding energy will 

result in an escape velocity vJc N 10 -*. Note that the mean phase-space density 

of axions in such a gravitational well is enormous:-n N p.m;4v;3 - 104sf~2, where 

fi2 z f./10r2GeV. 

We will show below that due to non-linear effects, a substantial number of regions 

can have axion density at T > T, many times larger than 2 pa. 

Let us parametrize the energy density of a single fluctuation as p,,(re < T < 

Tl, 0i) m 3 @(Bi)T.s/4, where 19, is the misalignment angle at Tl, s is the entropy den- 

sity, and @(Si) = 1 corresponds to the mean axion density.. The energy density inside 

a given fluctuation is equal to the radiation energy density at T = @(Oi)Te. At that 

time the fluctuation becomes gravitationally non-linear and collapses. Consequently, 

at T, 

~.(ed - +*omm, 
will be the minicluster;density after it separates out as a bound object. Even a 

relatively small increase in qei) 1s important because the density depends upon the 
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fourth power of a(&). 

Ref. [2] demonstrated that due to anharmonic effects for fluctuations with 6’; close 

to R, some correlated regions can have values of @(0i) larger than just a factor of two. 

The reason is simple: the closer Bi is to the top of the axion potential, 

V(8) = mi(T)f,2(1- cos8) Z Ai(T)(l -cos8), (2) 

the later axion oscillationscommence. However this effect alone is not very significant. 

In the range 0.1 5 c 5 10e3 we can parametrize it as I F=Z 1.5(0i/7r)2~-o.35, where 

[ G (z - ei)/rr, and @(6’i) is significantly larger than 2 only for field values very finely 

tuned to the top of the potential. Moreover, the axion field is not exactly coherent 

on the horizon scale, and small fluctuations might spoil this picture. 

At temperatures T ZP Tr, the potential is negligible in the equations of motion 

compared to the gradient terms which force the field to be homogeneous on scales 

less than the horizon. At T << Tr, on the contrary, gradients can be neglected and 

one can treat the evolution of fluctuations as that of a pressureless gas. Clearly at 

T N Tr, both the gradient terms and the potential are important, and in order to 

find the energy density profile at freeze out one has to trace the inhomogeneous field 

evolution through the epoch T N Tr. 

It is convenient to work in conformal coordinates with metric ds2 = a2(q)(dq2 - 

dZ2). During radiation dominance a a n and n cc T-l. The dependence of the axion 

mass upon the temperature at T > A qcn can be found in the dilute-instanton-gas 

approximation [8], and can be parametrized as a power law., m:(n) = mz(n.)(n/v.)“, 

where n = 7.4 & 0.2 [2].~ Introducing the field $ = rp9, the equations of motion for 

a spherically symmetric axion fluctuation in an expanding Universe is of the form 

$-1L”-2*‘,‘/r+ij “C3sin (V/J/~) = 0, where rj is the reduced conformal time parameter 

75 = n/q., and em, = H(r).). The radial coordinate r is defined in the comoving 
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FIG. 1. Energy density contrast in a fluctuation with initial radius co = 1.8 and 
0: = 2.75 at several moments of time as a function of comoving radius c. The 
density contrast is normalized to the value of the homogeneous energy density at 
q = 4. 

reference frame, with P = 1 corresponding to Rphys(q.) = Hel(q.). 

We integrated this equation numerically for a wide range of initial conditions. 

We evolved configurations which are at rest at rj = 0.1. The initial distribution of 

the field can be parametrized by the initial radius of the fluctuation, co, the initial 

value of the field inside, 6’<, the initial value of the field outside, t$‘, and the width 

of transient region, AT. The important common feature is that the final density 

distribution develops a sharp peak in the center. The larger the gradients of initial 

configuration, the higher the final peak, e.g., the peak grows with increase in 10: -0’1. 

4 



___._,_._.-__.-__.-.-.-.-.-.-.-.-.-. -.-.- ,-.-.-._. \. -------- -1 ! 

,I \ 
I 
i 

_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _. . . i 
.....- . . . . . . . . . . 

->.:, 
i 

'q-h. 

1 L.- 

t t I I ,,,I,1 I 1 I t,Itll I I I 
0.01 0.1 r 1 

FIG. 2. Energy density profiles at +j = 4 for identical initial fluctuations evolved with 
different Lagrangians. Solid line: axion case; dashed line: V(8) 0: e2/2; dotted line: 
V(O) cx 02/2 + e4/4; dash-dotted line: axion potential with field gradients switched 
Off. 

The peak also grows with decreasing width of the transient region. We present here 

the results of runs with initial amplitude of the field outside the fluctuation equal to 

the r.m.s. value of the misalignment angle, i.e., 8’ = X/X/?, and width of transient 

layer AT N 0.6. 

Energy density profiles as a function of time are presented in Fig. 1 for a typical 

case. .3t 75 = I there are two waves, incoming and outgoing, both propagating with 

the velocity of light. At approximately fj = 2 the incoming wave reaches the center 

and the outgoing wave reaches c x 3.5. At later times the wave front does not move 
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significantly because the axion mass effectively switches on at 7, z 2, and the edge of 

the fluctuation “freezes.” 

One reason for energy density growth at later times is the continuing increase of 

the axion mass. However the relative density contrast in the center with respect to 

the unperturbed homogeneous environment continues to increase up to the final time 

of integration, f7 = 4. This is entirely a non-linear effect. One can see this in the 

following way: The average pressure over a period of homogeneous axion oscillations 

in potential Eq. (2) is negative, and is equal to (P) N -A~(T)0~/64, where B. is 

the amplitude of the oscillations [9]. In other words, the axion self-interaction is 

attractive. The larger the amplitude of oscillations inside the fluctuation, the more 

negative will be the pressure inside, and consequently, fluctuations with excess axions 

will contract in-the comoving volume. In addition, matter with a smaller pressure 

suffers less redshift in the energy density. To see this effect we present in Fig. 2 the 

final density profiles corresponding to identical initial field distributions evolved with 

different potentials: the axion potential of Eq. (2); the axion potential with gradients 

artificially switched off; a pure harmonic potential, V(0) cc 6'*/2, where (P) = 0; 

and the potential V(e) o( 02/2 +04/4, where (P) > 0. Note that for the harmonic 

potential, at ij = 4 the maximal density excess is only about 3, i.e., ten times smaller 

than for the axion potential. 

The dependence of the energy density contrast in the center upon the initial radius 

is shown on Fig. 3. In the whole range of values of re plotted, the energy density takes 

its maximum value just in the center of the final configuration. Only if r. < 1.55 

or rs > 2.05 does the final energy density -profile have a maximum at some non- 

zero radius. In a sense, the initial radius of the fluctuation in the plotted range is 

more or less tuned in such a way that the arrival of the incoming wave at the center 

is synchronized with the switching on of the: axion mass. However, there is nothing 
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FIG. 3. Dependence of density contrast in the center of a fluctuation at fj = 4 upon 
the initial radius of a fluctuation for several values of the initial misalignment angle 
inside the fluctuation. 

unnatural in this “synchronization,” since as larger and larger scales enter the horizon. 

in an expanding Universe there will always be a scale for which the incident wave of 

a disappearing fluctuation reaches the center just at the moment of freeze out. 

Quantitatively, the assumption of spherical symmetry is very important. How- 

ever, in general any isolated contrast in the initial misalignment angle will decay via 

incoming and outgoing waves which will not possess spherical symmetry. The overall 

picture will be the same as in the spherical case, but the values of the maximal energy 

contrast in the final configuration at a given 0: will be smaller. Note in this respect, 

that the final density contrast rapidly grows with increase of 0: (see Fig. 3) due to the 
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attractive self-interaction resulting in negative pressure. This has nothing to do with 

the symmetry of the fluctuation, and we may expect to find large density contrasts 

in regions where the field values happen to be close to x initially [lo]. 

The effect of the field gradients is important aot only in the discussion of the 

formation of high density peaks, but also in the careful estimate of the mean density 

of axion matter. We found that the total excess mass of axions within a fluctuation, 

compared to the homogeneous background, does not vary much, and is equal approx- 

imately to half of the excess mass if gradients in the equations of motions would be 

neglected. This deficit might be attributed to the redshift at early times, 15 5 2, when 

axions are still relativistic. 

The energy density contrast plotted in Figs. 1 and 2 will coincide with the factor 

I in Eq. (1) if we assume that the mean cosmological density of axions corresponds 

to homogeneous oscillations with initial amplitude equal to the r.m.s. value of the 

misalignment angle. As we have noted already, the energy density in an axion clump 

after it separates out from the general expansion will be a4(6’;) times larger than the 

energy density at T,. So a density contrast of 30 will correspond to roughly a factor 

of lo6 in the energy density of the cluster at T < T,. 

All axion miniclusters could be, in principle, relevant to laboratory axion search 

experiments, since for a minicluster with Qi as small as 2, the density is 10” larger than 

the local galactic halo density. However, the probability of a direct encounter with 

a clump is small. The interesting question arises, could there be any astrophysical 

consequences of very dense axios:clumps ? Below we shall discuss the possibility of 

“Bose star” formation inside axion miniclusters. 

The physical radius of an sxion clump at T’ is larger-by many orders of magnitude 

than the de Broglie wavelength of an axion in the corresponding gravitational well. 

Consequently, gravitational collapse of the &ion clump and subsequent virialization 
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can be described in the usual terms of cold dark matter particles. In a few crossing 

times some equilibrium (presumably close to an isothermal) distribution of axions 

in phase space will be established. It is remarkable that in spite of the apparent 

smallness of axion quartic self-couplings, IX.1 = (fZ/fa)4 N 10-53f$, the subsequent 

relaxation in an axion minicluster due to 2a + 2a scattering can be significant as a 

consequence of the huge mean phase-space density of axions (511 In the case of Bose- 

Einstein statistics the inverse relaxation time is (1 + il) times the classical expression, 

or 76’ - fi UeuPa(mar where CJ is the corresponding cross section. For particles 

bounded in a gravitational well, it is convenient to rewrite this expression in the form 

151 

TR N m~X;2p;2v,2. (3) 

The shallower the gravitational well at a given density of axions, the larger the mean 

phase space density, and consequently the smaller the relaxation time due to the v,” 

dependence in Eq. (3). Note also the dependence of the inverse relaxation time upon 

the square of the particle density. 

The relaxation time (3) is smaller then the present age of the Universe if the 

energy density in the minicluster satisfies 

PlO > l@QJfi2, (4) 

where pro z p/( 10eV)4 and u-s = t~,/lO-~. If this occurs, then an even denser core 

in the center of the axion cloud should start to form. An analogous.process is the 

so-called gravithermal instability caused by gravitational scattering. This was studied 

in detail for star clusters, where the “particles” obey classical,,Maxwell-Boltzmann 

statistics. Axions will dbey Bose-Einstein statistics, with equilibrium phase-space 

density n(p) = n,,d + [&-- I]-‘, c on aining a sum of two contributions, a Bose con- t 

densate and a thermal distribution. ‘The maximal energy density that non-condensed 
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sxions can saturate is p,~~ - move, which corresponds to firher~ - 1. Consequently, 

given the initial condition ii > 1, one expects that eventually the number of particles 

in the condensate will be comparable to the total number of particles in the region 

where relaxation is efficient. Under the influence of self-gravity, a Bose star [9,11] 

then forms [5]. One can consider a Bose star as coherent sxion field in a gravitational 

well, generally with non-zero angular momentum in an excited energy state [9]. 

Comparing Eqs. (1) and (4), we conclude that the relaxation time is smaller thau 

the present age of the Universe and conditions for Bose star formation can be reached 

in miniclusters with density contrast @(0;) 2 30 at the QCD epoch. For examples of 

such density contrasts, see Figs. 1 and 3. 

Under appropriate conditions stimulated decays of axions to two photons in a 

dense axion Bose star are possible [9,12] (see also [13]), which can lead to the formation 

of unique radio sources-axionic masers. In view of results of present paper we 

conclude that the questions of sxion Bose star formation, structure and possible 

astrophysical signatures deserves detailed study. 

In conclusion, we have presented a numerical study of the evolution of inhomo- 

geneties in the axion field around the QCD epoch, including for the first time impor- 

tant non-linear effects. We found that the non-linear effects can lead to a much larger 

core density of axions in miniclusters than previously estimated. The increase in the 

density may be sufficiently large that axion miniclusters might exceed the critical 

density necessaryrfor them to relax to form Bose stars. 
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